Von den Sätzen, auf welche Newton seine Gravitationstheorie gründete, ist jener einer der wichtigsten, welcher besagt, daß die Anziehung, welche die Erde auf irdische Körper ausübt, der Masse der Körper proportional und unabhängig von ihrer materiellen Konstitution ist.
Schon Newton bestätigte diesen seinen Satz durch Versuche. Er begnügte sich nicht mit dem schon vor ihm bekannten Schulexperiment, welches zeigt, daß im leeren Raume die Feder und die Münze gleich schnell fallen; er benützte zu diesem Zwecke die Pendelbewegungen, welche viel genauer zu beobachten sind. Er verfertigte Pendel, in welchen gleich schwere Körper von verschiedener Substanz: Gold, Silber, Blei, Glas, Sand, Kochsalz, Wasser, Getreide und Holz sich auf Kreisbögen von womöglich gleichen Radien bewegten und indem er ihre Schwingungsdauer beobachtete, konnte er zwischen ihnen keinen Unterschied konstatieren.
Ohne Zweifel sind diese Versuche von Newton viel genauer, als die genannten Schulexperimente; doch beträgt ihre Genauigkeit kaum mehr als ein Tausendstel, so daß sie streng genommen nur so viel beweisen, daß die Differenz in den Beschleunigungen der in den Pendeln verwendeten Körper nicht mehr, als den tausendsten Teil ihres Wertes beträgt. Dieser Grad der Genauigkeit kann bei der Entscheidung einer so wichtigen Frage nicht als genügend betrachtet werden und darum hielt Bessel im Verlaufe seiner klassischen Pendelversuche eine erneute Untersuchung für notwendig.
Durch seine Messungen, die er bezüglich der Schwingungen von Gold, Silber, Blei, Eisen, Zink, Messing, Marmor, Ton, Quarz und der Meteoriten-Substanz ausführte, bewies er unzweideutig, daß in den gravitationalen Beschleunigungen dieser Körper keine größere Abweichung bestehen kann, als ein Fünfzigtausendstel dieser Beschleunigung. Doch auch das genügt noch nicht. Bessel bemerkt treffend, es wird immer von Interesse sein, die Richtigkeit dieses Satzes mit der Genauigkeit zu prüfen, welche die sich vervollkommnenden Hilfsmittel des fortschreitenden Zeitalters zu erreichen erlauben.
Vornehmlich aus zwei Gründen ist diese Untersuchung wünschenswert. Erstens darum, weil der Satz von Newton die Grundlage dessen bildet, daß wir die Masse der Körper durch ihre Schwere auf der Waage bestimmen können, es erfordert also die Logik, daß die Richtigkeit des Grundsatzes wenigstens bis zu jenem Grad der Genauigkeit bewiesen sei, welche wir bei der Wägung erreichen können; und dieser erreicht bedeutend mehr, als ein Fünfzigtausendstel, ja sogar mehr, als ein Millionstel. Zweitens weil die Versuche von Newton und Bessel sich nur auf solche Körper erstrecken, welche von einander, was ihre materielle Konstitution anbelangt, im Verhältnis wenig Verschiedenheit zeigen und sie lassen die Frage bezüglich der viel dünneren gasartigen Körper beinahe ganz offen. Aus den Versuchen von Bessel können wir höchstens so viel folgern, daß die Anziehung auf die Luft von jener auf feste Körper nicht mehr, als ein fünfzigstel Teil abweicht.*
Im Verlaufe meiner Untersuchungen über Massenanziehung richtete sich meine Aufmerksamkeit auch auf diese Frage und indem ich ihre Lösung auf ganz anderem Wege anstrebte, als Newton und Bessel und eine viel größere Genauigkeit erreichte als sie, habe ich es für wert gefunden den Gang meiner Betrachtungen und die Resultate meiner Versuche der geehrten Akademie vorzulegen.
Die Kraft, infolge deren die Körper im leeren Raume zur Erde fallen und welche die Schwere genannt wird, ist die Resultante von zwei Komponenten, nämlich der Anziehung der Erde und der Zentrifugalkraft, die aus der Umdrehung der Erde entsteht. Diese zwei Komponenten sind einander im allgemeinen weder gleich noch entgegengesetzt gerichtet, sondern sie bilden miteinander einen Winkel, welcher nahe gleich dem Komplementärwinkel der geographischen Breite ist. Die Richtung der Resultante ist von diesen Komponenten abhängig; es ist also klar, daß in demselben Punkt der Erde, da die Zentrifugalkraft der Körper von gleicher Masse gleich ist, die Schwere dieser Körper verschieden gerichtet sein müßte, wenn die Anziehungskräfte auf sie verschieden wären.
In Budapest bewirkt die Zentrifugalkraft eine Abweichung nach Süden von ungefähr 5' und 56", das ist 356" von der Richtung der Anziehung der Erde. Durch Rechnung finden wir, daß wenn die Anziehung der Erde auf zwei Körper von gleicher Masse, jedoch von verschiedener Substanz um ein Tausendstel verschieden wäre, die Richtungen der Schwere der beiden Körper miteinander einen Winkel von 0.356 Sek., das ist ungefähr eine Drittel Sekunde bilden würden; und wenn die Differenz in der Anziehungskraft ein Zwanzigmillionstel betrüge, müßte dieser Winkel 356"/20,000,000 sein, das ist etwas mehr, als eine sechzigtausendstel Sekunde.
Zur Beobachtung der in der Richtung der Schwere eventuell auftretenden so kleinen Unterschiede sind das Bleilot und die Libelle nicht genügend empfindlich. Gut verwendbar ist aber die Torsionswaage, so wie ich sie zur Beobachtung der in der Richtung der Schwerkraft auftretenden kleinen Unterschiede bei anderen Versuchen schon verwendete.
Ich befestigte in meinen Torsionswaagen an den Enden eines Waagebalkens von 25-50 cm Länge, welcher an einem dünnen Platindraht hing, einzelne Körper von ungefähr 30 g Gewicht. Nachdem der Balken senkrecht auf den Meridian gestellt wurde, bestimmte ich genau seine Lage mittels eines sich mit ihm bewegenden und eines an den Kasten des Instrumentes befestigten Spiegels. Dann drehte ich das Instrument samt Kasten um 180°, so zwar, daß der Körper, der sich früher am östlichen Ende des Balkens befand, jetzt an das westliche Ende kam und nun bestimmte ich von neuem die Lage des Balkens zum Instrument. Wenn die Schweren der an den beiden Seiten angebrachten Körper verschieden gerichtet wären, so müßte eine Torsion des Aufhängedrahtes erfolgen. Das zeigte sich aber nicht, wenn mit der auf der einen Seite konstant angebrachten Messingkugel auf der anderen Seite Glas, Korkholz oder Antimonit-Kristalle befestigt waren; und doch müßte eine Abweichung von 1/60000 Sekunden in der Richtung der Schwerkraft eine Torsion von einer Minute, welche genau beobachtbar ist, hervorrufen.
Ich untersuchte dann auch insbesondere, wie sich die Sache bezüglich der Luft verhält. Auf die sich in der Luft bewegenden Körper wirkt eine auftreibende Kraft, welche der Schwere der verdrängten Luft gleich, aber entgegengesetzt gerichtet ist. Wenn also die Schwere der Luft anders gerichtet wäre, wie die anderer Körper, so müßte sich dieser Umstand in den oben beschriebenen Versuchen in der Torsion des Drahtes manitestieren. Natürlich wäre die Torsion nicht dem Gewichte des in der Luft schwimmenden Körpers, sondern jenem der verdrängten Luft proportional. Um letzteres möglichst zu vergrößern, befestigte ich an einem Ende des Balkens eine leere Glaskugel, die ein Volumen von 120 Kubikzentimeter hatte, während ihr Gewicht 30 g betrug, so daß der Auftrieb der Luft ungefähr 1/200 des letzteren ausmachte. Es erforderte eine große Vorsicht von diesem Körper von relativ großem Volumen den störenden Einfluß der Luftströmung und der Strahlung auszuschließen und den Balken in sicheres Gleichgewicht zu bringen. Dies gelang nur in dem ruhigen Keller des physikalischen Institutes der Budapester Universität bei Nacht und zwar dadurch, daß ich die Gleichgewichtslagen mittels photographischer Apparate bestimmte.
Eine Torsion konnte ich auch in diesem Falle nicht beobachten, so daß eine Abweichung von dem Satze Newton's auch meine Versuche, welche doch mehr als um das 400-fache genauer sind als jene Bessel's, nicht zeigen.
Ich kann daher mit Recht behaupten, daß wenn überhaupt eine Differenz in der Schwere der Körper von gleicher Masse, jedoch verschiedener Substanz vorhanden ist, diese in Bezug auf Messing, Glas, Antimonit und Korkholz kleiner ist als ein Zwanzigmillionstel, in Bezug auf Luft und Messing aber gewiß kleiner als ein Hunderttausendstel.